Physics-Homework

Chapter 9

说明:$\dot{x}$表示$x$对时间的一阶导数,$\ddot{x}$表示$x$对时间的二阶导数

9-1

解:

代入初值,得: \(\begin{aligned} A\cos\varphi&=0.06\\ -3\pi A\sin\varphi&=-0.24 \end{aligned}\tag{SI}\) 解得: \(\begin{aligned} A&=6.52\times 10^{-2}\quad\mathrm{m}\\ \varphi&=\arctan(-0.637)=-32.5\degree \end{aligned}\)

9-2

解:

设振动表达式为$x=A\cos(\omega t+\varphi)$,得: \(\begin{aligned} v_m&=A\omega\\ \varphi&=\frac{\pi}{2} \end{aligned}\) 即: \(\begin{aligned} \omega&=1.5\quad\mathrm{rad\cdot s^{-1}}\\ \varphi&=\frac{\pi}{2} \end{aligned}\) 故振动表达式为: \(x=0.02\cos(1.5t+\frac{\pi}{2})\tag{SI}\)

9-3

解:

9-4

解:

设$x=A\cos(\omega t+\varphi)$ 由图可知: \(\begin{aligned} \omega&=\frac{2\pi}{T}=\pi\quad\mathrm{rad\cdot s^{-1}}\\ A&=10\quad\mathrm{m}\\ \varphi&=-\frac{2}{3}\pi \end{aligned}\) 故得: \(x=10\cos(\pi t-\frac{2}{3}\pi)\tag{SI}\)

9-5

解:

9-6

解:

9-8

解:

能量表达式: \(E=\frac{1}{2}m\dot{x}^2-\frac{1}{4\pi\epsilon_0}\frac{Qq}{\sqrt{x^2+R^2}}\) 由能量守恒$\frac{dE}{dt}=0$: \(m\ddot{x}+\frac{Qq}{4\pi\epsilon_0}\frac{x}{(x^+R^2)^{3/2}}=0\) 利用$x\ll R$,得: \(\ddot{x}+\frac{Qq}{4\pi\epsilon_0 mR^3}x=0\) 为简谐运动,振动周期为: \(T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{4\pi\epsilon_0 mR^3}{Qq}}\)

9-10

解:

9-12

解:

9-14