Chapter 9
说明:$\dot{x}$表示$x$对时间的一阶导数,$\ddot{x}$表示$x$对时间的二阶导数
9-1
解:
代入初值,得:
\(\begin{aligned}
A\cos\varphi&=0.06\\
-3\pi A\sin\varphi&=-0.24
\end{aligned}\tag{SI}\)
解得:
\(\begin{aligned}
A&=6.52\times 10^{-2}\quad\mathrm{m}\\
\varphi&=\arctan(-0.637)=-32.5\degree
\end{aligned}\)
9-2
解:
设振动表达式为$x=A\cos(\omega t+\varphi)$,得:
\(\begin{aligned}
v_m&=A\omega\\
\varphi&=\frac{\pi}{2}
\end{aligned}\)
即:
\(\begin{aligned}
\omega&=1.5\quad\mathrm{rad\cdot s^{-1}}\\
\varphi&=\frac{\pi}{2}
\end{aligned}\)
故振动表达式为:
\(x=0.02\cos(1.5t+\frac{\pi}{2})\tag{SI}\)
9-3
解:
- (1)
由题意可知,物体振动表达式为$x=A\cos\omega t$,其中
\(\begin{aligned}
A&=4.8\times 10^{-2}\quad\mathrm{m}\\
\omega&=\frac{2\pi}{T}=\frac{2}{3}\pi\quad\mathrm{rad\cdot s^{-1}}
\end{aligned}\)
带入$t=0.5\ \mathrm{s}$,得:
\(x=\frac{A}{2}=2.4\times 10^{-2}\quad\mathrm{m}\)
- (2)
得:
\(\cos\omega t=\frac{1}{2}\)
得最小的$t=0.5\ \mathrm{s}$
9-4
解:
设$x=A\cos(\omega t+\varphi)$
由图可知:
\(\begin{aligned}
\omega&=\frac{2\pi}{T}=\pi\quad\mathrm{rad\cdot s^{-1}}\\
A&=10\quad\mathrm{m}\\
\varphi&=-\frac{2}{3}\pi
\end{aligned}\)
故得:
\(x=10\cos(\pi t-\frac{2}{3}\pi)\tag{SI}\)
9-5
解:
- (1)
设摆角为$\theta$,有$\theta\ll 1$,设总能量为$E$,以圆心处为势能零点。有:
\(E=\frac{1}{2}mr^2\dot{\theta}^2-mgr\cos\theta\)
由能量守恒,有:
\(\frac{dE}{dt}=0\)
代入且利用$\theta\ll 1$,得:
\(\begin{aligned}
mr^2\dot{\theta}\ddot{\theta}+mgr\sin\theta\cdot\dot{\theta}&=0\\
\Rightarrow\dot{\theta}+\frac{g}{r}\theta&=0
\end{aligned}\)
为简谐运动方程。
- (2)
由(1)可得:
\(\omega=\sqrt{\frac{g}{r}}\)
故:
\(T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{r}{g}}\)
9-6
解:
- (1)
设浸没深度为h。
\(\rho l^3\ddot{h}=\rho l^3g-\rho_w l^2 hg\)
有$h=a$时平衡,进行换元$h=a+x$,得:
\(\ddot{x}+\frac{g}{a}x=0\)
为简谐运动。
- (2)
由(1)得:
\(T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{a}{g}}\)
由题目所给条件,有:
\(A=|b-a|\)
9-8
解:
能量表达式:
\(E=\frac{1}{2}m\dot{x}^2-\frac{1}{4\pi\epsilon_0}\frac{Qq}{\sqrt{x^2+R^2}}\)
由能量守恒$\frac{dE}{dt}=0$:
\(m\ddot{x}+\frac{Qq}{4\pi\epsilon_0}\frac{x}{(x^+R^2)^{3/2}}=0\)
利用$x\ll R$,得:
\(\ddot{x}+\frac{Qq}{4\pi\epsilon_0 mR^3}x=0\)
为简谐运动,振动周期为:
\(T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{4\pi\epsilon_0 mR^3}{Qq}}\)
9-10
解:
- (1)
\(A=\sqrt{\frac{2E}{k}}=0.25\ \mathrm{m}\)
- (2)
\(E_p=\frac{1}{2}kx^2=0.2\ \mathrm{J}\)
\(E_k=E-U=0.6\ \mathrm{J}\)
- (3)
\(v_m=\sqrt{\frac{2E}{m}}=2.5\ \mathrm{m\cdot s^{-1}}\)
9-12
解:
- (1)
有$E_k=E_p$且$E_k+E_p=\frac{1}{2}kA^2$,故有:
\(\frac{1}{2}kx^2=\frac{1}{2}\cdot\frac{1}{2}kA^2\)
得:
\(x=3\sqrt{2}\times 10^{-2}\ \mathrm{m}\)
- (2)
\(\sin\Delta\varphi=\frac{\sqrt{2}}{2}\)
\(t=\frac{\Delta\varphi}{\omega}=0.75\ \mathrm{s}\)
9-14
- (1)
\(\begin{aligned}
A&=\sqrt{A_1^2+A_2^2+2A_1A_2\cos(\varphi_1-\varphi_2)}=5\ \mathrm{m}\\
\varphi&=\arctan\frac{A_1\sin\varphi_1+A_2\cos\varphi_2}{A_1\cos\varphi_1+A_2\cos\varphi_2}=0.40\ \mathrm{rad}
\end{aligned}\)
- (2)
\(A=\sqrt{A_1^2+A_3^2+A_1A_3\cos(\varphi-\frac{\pi}{3})}\)
故有:
当$\varphi=\frac{\pi}{3}$时,合振幅最大;当$\varphi=\frac{4\pi}{3}$时,合振幅最小。