Physics-Homework

Chapter 1

说明:$\dot{x}$表示$x$对时间的一阶导数,$\ddot{x}$表示$x$对时间的二阶导数

1-1

解:
\(\begin{aligned} s&=x|_{t=4s}-x|_{t=0s}\\ &=6\times4-4^2-0\\ &=8m \end{aligned}\)

\(v=\frac{dx}{dt}=6-2t(SI)\) 令$v=0$,有$t=3s$.
\(\begin{aligned} l&=|\Delta s_1| +|\Delta s_2|\\ &=6\times3-3^2+6\times3-3^2-6\times4+4^2\\ &=10m \end{aligned}\)

1-2

解:
\(\begin{cases} t=x/2\\ y=12-2t^2 \end{cases} (SI)\Rightarrow \begin{aligned} y=12-\frac{1}{2}x^2 \end{aligned}\)

\(\begin{cases} x=2t\\y=12-2t \end{cases} (SI)\) $\Rightarrow$ \(\begin{cases} \dot{x}=2\\\dot{y}=-4t \end{cases}(SI)\) $\Rightarrow$ \(\begin{cases} \ddot{x}=0\\\ddot{y}=-4 \end{cases}(SI)\)

1-3

解:
\(s|_{t=4.5}=\int^{4.5}_0v(t)dt=1+2+0.5-0.25-1-0.25=2m\)

1-4

解:
\(\begin{aligned} \frac{d^2x}{dt^2}&=3+9x^2\\ \Rightarrow v\frac{dv}{dx}&=3+9x^2\\ \Rightarrow vdv&=(3+9x^2)dx\\ \Rightarrow \int^t_0 vdv&=\int^t_0(3+9x^2)dx\\ \Rightarrow \frac{1}{2}v^2&=3x+3x^3\\ \Rightarrow v&=\sqrt{6x+6x^3} \end{aligned}\)

1-5

解:

1-6

解: \(\begin{aligned} \frac{dv}{dt}&=-kv^2\\ \Rightarrow v\frac{dv}{dx}&=-kv^2\\ \Rightarrow\frac{dv}{v}&=-kdx\\ \Rightarrow\ln v-\ln v_0&=-kx\\ \Rightarrow v&=v_0e^{-kx} \end{aligned}\)

1-7

解:

1-8

解:
\(\begin{aligned} \frac{x}{H}&=\frac{x-s}{h}\\ \Rightarrow hx&=Hx-Hs\\ \Rightarrow(H-h)x&=Hs\\ \Rightarrow x&=\frac{Hs}{H-h}\\ \Rightarrow v_{head}&=\frac{Hv_0}{H-h} \end{aligned}\)

1-9

解:
有物体加速度为$\boldsymbol a=-g\boldsymbol j$。
分解到切向与法向,有: \(\begin{cases} a_\parallel&=-g\sin\theta\\a_\perp&=-g\cos\theta \end{cases}\)

1-10

解:

质点速度为: \(v=\frac{ds}{dt}=b-ct\) 质点加速度为: \(\begin{cases} a_t=|\dot{v}|=c\\ a_n=v^2/R=(b-ct)^2/R \end{cases}\) 令$a_t=a_n$,有: \(t=b/c\pm\sqrt{R/c}\)

1-11

解:

1-12

解:
<img src=1_12.png width=”30%”> $\boldsymbol v=25 km\cdot h^{-1}\boldsymbol i+40km\cdot h^{-1}\boldsymbol j$

1-13

解:
<img src=113.png width=”30%”>
$v_s=\sqrt{v
{car}^2+v_{drop}^2}=4\sqrt{58}$,方向向下偏北$\arctan\frac{3}{7}$

1-14

解:
<img src=1_14.png width=”50%”>
$\tan\alpha=\frac{l}{h},v_1=v_2\sin\theta+v_2\cos\theta\tan\alpha$
$\Rightarrow v_1=v_2(\sin\theta+\frac{l}{h}\cos\theta)$

1-15

解:
有河流流速为: \(v_{water}=\begin{cases} \frac{2v_0}{L}y,&y\in[0,\frac{L}{2}]\\\frac{2v_0}{L}(l-y),&y\in[\frac{L}{2},L] \end{cases}\)

  1. 向河中心行驶:
    有$y=ut,v_x=\frac{2v_0}{L}y$。
    可得: \(\begin{aligned} v_x&=\frac{2v_0u}{L}t\\ \Rightarrow x&=\frac{2v_0u}{L}\int^t_0tdt\\ \Rightarrow x&=\frac{v_0u}{L}t^2 \end{aligned}\)
    末状态有$t_1=\frac{L}{4u},x_1=\frac{v_0L}{16u}$,轨迹方程为 $x=\frac{v_0}{uL}y^2$
  2. 回程:
    有$\frac{L}{4}-y=\frac{u}{2}(t-t_1),v_x=\frac{2v_0}{L}y$。
    可得: \(\begin{aligned} v_x&=\frac{3v_0}{4}-\frac{v_0u}{L}t\\ \Rightarrow x-x_1&=[\frac{3v_0}{4}t-\frac{v_0u}{2L}t^2]^t_{t_1}\\ \Rightarrow x&=\frac{3v_0}{4}t-\frac{v_0u}{2L}t^2-\frac{3v_0L}{32u} \end{aligned}\) 末状态有$t_2=\frac{3L}{4u},x_2=\frac{3v_0L}{16u}$,
    轨迹方程为 $x=-\frac{2v_0}{uL}y^2-\frac{v_0}{u}y-\frac{3v_0L}{8u}+\frac{9}{16}v_0L$。

综上:
轨迹方程: \(x=\begin{cases} x=\frac{v_0}{uL}y^2,&x\in[0,\frac{v_0L}{16u}]\\ x=-\frac{2v_0}{uL}y^2-\frac{v_0}{u}y-\frac{3v_0L}{8u}+\frac{9}{16}v_0L,&x\in[\frac{v_0L}{16u},\frac{3v_0L}{16u}] \end{cases}\)
返回本岸时离出发点的距离为$\frac{3v_0L}{16u}$。